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Abstract

A discrete-time model reference adaptive control scheme is developed for trajectory track-

ing of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the

controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross

robot parameter variation and uncertainties. The method offers considerable design flexibility

and enables the designer to improve the performance of the control system by adjusting free

design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore

suitable for real-time implementation.

1. Introduction

It is recognized that adaptive schemes are effective means of robot control due to their abil-

ity to cope with the highly nonlinear, coupled and time-varying characteristics of robots. This is

specially true in the case of direct drive robots and light weight manipulators where inertia

changes and gravity effects are significant. Research efforts on adaptive control of manipulators

have been concentrated on developing continuous-time control schemes [e.g. 1-9]. In practice

however, robots are controlled by digital computers on discrete-time basis. Digital implementa-
tion of a solution based on continuous-time formulation can result in degradation of performance

and the closed-loop system can even become unstable, especially when the sampling time is not

small. Even if the sampling time could be made sufficiently small, digital implementation of a

discrete-time adaptive scheme is more direct and straightforward.

In this paper, we develop a discrete-time model reference adaptive control scheme for tra-

jectory tracking of robot manipulators. The present approach differs from the previously pub-

lished results [e.g. 10-12] in that the discrete-time adaptive control is developed on the basis of a

general coupled robot model, without linearizing the model or assuming negligible interactions

among robot joints. Furthermore, instead of the conventional Lyapunov approach, hyperstability

theory is utilized to obtain the adaptation laws. The use of hyperstability theory is more appealing

than the Lyapunov approach since it is better suited to discrete-time systems and also offers more

flexibility in design by providing additional free design parameters. These parameters can be

adjusted by the designer to improve the response. Finally, the proposed discrete-time adaptive

control algorithm is extremely simple and computationally fast, and is therefore suitable for real

time digital control of robot manipulators.
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2. Discrete-Time Robot Model

The equation of motion of an n -joint robot manipulator carrying a payload of mass m can be
written as [4,9]

B 2(0,0,m ) 0 + B l(0,0,m ) b + B 0(0,0,m) 0(t) = u (t) (1)

where 0(t) and u (t) are the nx1 joint angle and joint torque vectors respectively, and B2(.), B l(.)

and B 0(.) are n ×n matrices whose elements are complex nonlinear functions of 0(t) ,0(t) and m (t).
Since 0(t) ,0(t) and m (t) are functions of time, (1) can be expressed as

B 2(/) 0(t) + B l(t) 0(t) + B 0(t) 0(t) = u (t) (2)

where B 2(t) _=B 2(0,1_,/71 ), B l(t) ---B l(0,0,m ) and B 0(t) _-B 0(0,0,m ) are n ×n time- varying robot
matrices.

Suppose that the robot is controlled by a digital controller. The inputs to the controller are

the reference trajectory represented by the n ×1 vector 0, (k) and the actual joint angle vector 0(k),

where 0r(k) and 0(k) are obtained by sampling 0,(t) and 0(t) at equally spaced time intervals T.

The output of the digital controller is the vector u(k), and is passed through a hold circuit to

obtain the continuous-time signal u (t) where u (t) is constant over the time interval (k-1)T<_.t<_kT.

In order to obtain the equation relating 0(k) and u (k), we must discretize the robot model (2). A

simple method of discretization is by using the approximations

I_(/) = T[0(k)-0(k-1)l ; O(t)=-_O(t)=--_2[O(k)._20(k_l).t_O(k_2) 1 (3)

Substituting (3) into (2), we obtain

A 2(k ,T) 0(k-2) + A l(k ,T) 0(k-l) + A o(k ,T) 0(k) = u (k) (4)

B2(k) B l(k) 2B2(k ) B l(k) B2(k )
--, -- are n xnwhere A2(k'T)= T 2 AI(k'T)= T T 2 andA°(k'T)=B°(k) T + T 2

matrices, and B2(k),Bl(k ) , Bo(k ) are the values of B2(t), B l(t), Bo(t ) respectively, evaluated at

time t=kT. Note that A2(k,T) is a symmetric positive definite (SPD) matrix since B2(t ) is always

SPD [13]. Equation (4) is an accurate discrete-time representation of (1) provided that T is

sufficiently small so that (3) can be used.

For exact discretization, we must find the response 0(t) of the continuous model (2) at time

t=kT and equate it with the response 0(k) of the discrete model (4), [14]. This will ensure that the

two models describe the same robot motion at the sampling times t=kT, k=0,1,2 ..... Although this

procedure provides structural information about the robot discrete-time model, it is extremely
complex and will not be pursued here.

In the analysis to follow, we assume that the equation of the robot with a sampler in its out-

put and a hold circuit in its input can be described by the discrete-time model (4), where A 0(k ,T)

is invertible and the robot matrices are unknown. Since the sampling period is constant, we drop
it for convenience and write (4) as

A 2(k) 0(k-2) + A l(k) 0(k-l) +Ao(k ) O(k) = u (k) (5)

3. Adaptive Control Scheme

In this section, we describe a method for the design of discrete-time adaptive controllers for

the robot model (5) such that the robot joint angle vector 0(k) tracks the reference trajectory
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vector0, (k) despite variations in the payload and unknown robot model parameters.

Let the n xl joint angle error vector be defined as

0, (k) = 0, (k) - 0(k ) (6)

Substituting (6) into (5), we obtain the equation of the joint angle error as

_e(k)=___[-_(k)-__(k)_e(k-_)--_2(k)_`(k-2)+__(k)_r(k)+__(k)_r(k-_)+_2(k)_r(k-2)] (7)

Equation (7) suggests that in order to completely influence the joint angle error, we require a con-

trol law of the general form

u (k) = P l(k) 0, (k-1)+P 2(k ) 0, (k-2)+Q 0(k ) Or (k)+Q i(k ) 0, (k-1)+Q 2(k ) 0r (k-2) (8)

where Pl(k),P2(k) are time-varying feedback matrices acting on the joint angle error, and

Q 0(k ),Q l(k ),Q 2(k ) are time-varying feedforward matrices acting on the reference trajectory, all to

be determined. Note that the discrete-time control law (8) is analogous to the continuous-time

control law using position-velocity feedback and position-velocity-acceleration feedforward [9].

Substituting (8) into (7), we obtain the joint angle error equation for the closed-loop system

Oe(k)+ affi[Pi(k)+al(k)l O,(k-1)+aol[p2(k)+a2(k)] 0,(k-2) (9)

= a_l[ao(k)--Qo(k )lOt (k)+ a_l[a l(k _Ql(k )]O r (k-l)+ a_l[a2(k )-Q 2(k )10r (k-2)

Suppose that the desired performance of the manipulator is represented by

0,,, (k) + C 10o,, (k -1) + C 20,,,, (k-2) = 0 (10)

where 0e,,,(k) is the n)<l joint angle error vector of the reference model and C1,C2 are constant

n ×n matrices chosen such that joint angle errors are decoupled and decay with time. In the model

reference adaptive control terminology [15], equations (9) and (10) describe the adjustable sys-

tem and the reference model, respectively. For decoupling of the joint errors , we choose

Cl=diag{cli } and C2=diag{c2i }, i=1,2 ..... n. In order that the errors decay to zero, the roots

_'li , _2i of the characteristic polynomial A(z) of the reference model (10) must lie inside the unit

circle in the complex z-plane, where

I I "A(z)= l,,zE+Clz +C 2 =l--ISi(z) (lla)
i=i

and

8i(Z) = Z 2 + ¢1i Z + C2i = (Z+_.Ii)(Z"F_.2i) (1 lb)

Thus the diagonal elements of the matrices C 1 and C2 are

C li = _.li'F_2i ; C 2i = _.li _'2i , i=1,2 ..... n (llc)

where I_,. I<1 , I_kei I<1 for the stability of the reference model.

The solution to (10) is

O,m(k) = O,,, (k) 0,,, (0) (12)

where O,,,(k) is the transition matrix of the reference model (10) and 0,,,(0) is the initial value of

the reference model. If 0o, (0) is chosen to be zero, 0,,. (k) becomes identically equal to zero, i.e.

0,,,, (k) - 0 for all k >0, due to the stability of the reference model. The objective is now to devise
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an adaptation scheme such that the robot joint angle error dynamics 0e(k ) governed by (9)

approaches that of the reference model dynamics (10) in which 0,,,, (k )_-_.0.In order to achieve this
objective, we define the deviation between the ideal and the actual errors as

s(k) = 0,m (k) - 0, (k)

Combining (9), (10) and (13), we obtain

where

w(k) = [C

e(k) + C I e(k-1) + C2 E(k-2) + w (k) = 0

i-Affl( A l(k )+Pl(k))] 0, (k-I)+ IC2-Aft I (A 2(k )+P 2(k ))] 0e (k-2)

+aol[ao(k)-Qo(k)]O, (k)+ a_l[a l(k)--Q l(k)10r (k-l) + a_l[a2(k )-Q 2(k )10r (k-2)

-Wl(k)+w2(k)+ "" +ws(k )

(13)

(14a)

(14b)

The adaptation problem is to find the feedback gain matrices P l(k), P2(k) and the feedfor-

ward gain matrices Qo(k), Q l(k), Q2(k) such that the adaptation error dynamic (14) is stable, i.e.

e(k) approaches zero asymptotically. If this is achieved, the joint angle error vector 0,(k)

becomes equal to the reference model error vector 0e,,, (k )_=0, implying that 0,(k)=0, hence

0(k)=0r (k) and trajectory tracking occurs.

The state-space representation of (14) is

Ie(k-1)_ [ 0 l,,]re(k_2) _ [_] w(k) (15)E(k) J = --C 2 --C 1 Ll_(k-1)J-

Now consider the adaptation algorithm

r e(k-1)l
v(k)=D L e(k) J (16)

w (k)=WI (v ,0, )0, (k -1)+W2(v ,0, )0, (k -2)+W3(v ,Or )Or (k)+W4(v ,Or )Or (k -1)+Ws(V ,Or )Or (k-2) (17)

where v(k) is an n×l vector, D is a constant n×2n matrix to be determined, and

Wl(v ,0,) ..... Ws(v ,0r) are nxn matrices, also to be determined. In order to ensure that the adap-

tation dynamics described by (15)-(17) is stable so that the adaptation error approaches zero

asymptotically, we utilize the Popov hyperstability theory. This theory requires that the dynamic

equations of the adaptation process be arranged in a feedback configuration. The forward block

must contain only linear time-invariant dynamic equations while the feedback block can contain

nonlinear time-varying dynamic equations. In the robot control problem under consideration, the

forward block has the input w(k), the output v(k) and is described by (15)-(16). The nonlinear

feedback block is described by (17).

Accordinjg to the hyperstability theory, the adaptation algorithm (15)-(17) is stable in the

sense that Lim[ c(k_l)] = 0 if the following two conditions are satisfied:
k_®L et,lc) j

Condition 1 : The transfer function matrix of the forward block H(z)=z D (zl2n -C)-IB is

strictly p°sitive real (SPR)' where C =[ 0 In ] I_ 1-C2--C1 andB= .
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Condition 2 : The input-output of the feedback block satisfies the inequality _vr(k) w(k) >__y2
kffi0

for all k 1, where Yis an arbitrary finite constant and the superscript T denotes the transposition.

Using proportional plus integral type adaptation for the gain matrices, it is shown in the

appendix that the following algorithm that satisfies conditions 1 and 2

P l(k) = P 1(k-l) + 0, (k) 0T(k-1)E iP + 0, (k-l) 0T(k-2)[E lt-E 1P] (18a)

P 2(k ) = e 2(k -- 1) -I- 0t (k) 0T(k-2)e 2/' + t_e(k-l) 0T(k -3) [e 2/-E 2P ] (18b)

ao(k) = Qo(k-1) + 0,, (k) OT(k)Fop + l_e(k-l) OT(k-1)tFol-FoP] (18c)

Q l(k ) = Q 1(k-l) + 0, (k) 0T(k-1)F 1P + t_, (k-l) 0_r(k-2)[F it -F IP ] (18d)

a 2(k ) = a 2(k -1) + 0, (k) 0T(k -2)F 2P + 0, (k-l) 0T(k -3)[F 2/-F 2P ] (18e)

and

(_e (k) =R 2 0e (k-1) +R 3 0,(k) (18f)

where EopEot ..... F2p and F2/ are SPD adaptation gain matrices and the subscripts P and I

denote proportional and integral parts, respectively. R 2 and R 3 are n xn diagonal matrices whose

diagonal elements r 2i and r 3i are obtained from

r2i = O_i _'li _2i (_'ii + _2i) (19a)

r3i = oq (1 + )_li ),q./) i=1,2 ..... n (19b)

where txl are positive constants and _.li, L2i are the eigenvalues of the error reference model

chosen such that I_,1i I<1, I_'2i I<1, as explained before. Note that the feedback gains depend only

on the joint angle error vector, whereas the feedforward gains depend both on the joint angle vec-

tor and the reference trajectory vector. A block diagram of the adaptive control scheme is shown

in Figure 1.

Equations (8), (18) and (19) constitute the adaptation control algorithm. The SPD matrices

Eov, Eot ..... F2p, F2/, the positive scalars oq and the eigenvalues _li , _, must be specified by

the designer. A simple structure for the above matrices is the diagonal structure. Furthermore, a

particularly simple expression for 6, (k) is obtained if the eigenvalues of the reference model are

_.li=)_2i=O , i=1,2 ..... n. This corresponds to the so called "dead-beat control", and in this case

(18f) simplies to

_,(k)=R30,(k ) ; R3=diag{txi} (20)

Larger values of the elements of the matrices Eop .... ,F2t and the scalars cx_correspond to higher

adaptation gains and make the errors decay faster. However, if unmodeled dynamics are present,

high adaptation gains can excite unmodeled dynamics, resulting in instability. Thus the design

parameters must be selected based on a compromise between speed of adaptation and stability
considerations.

It is seen that the adaptive control laws given by (8), (18) and (19) are extremely simple and

are suitable for real time control. Furthermore the complex robot dynamics or robot parameters

are not required for the generation of control torques. The adaptation algorithm ensures that the

closed-loop system remains stable and that trajectory tracking occurs provided the rate of adapta-

tion of controller gains is higher than the rate of change of robot matrices. For example, the

matrices of many industrial robots do not change appreciably over time intervals of about ten
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milliseconds,in whichcasethecontrolleradaptationtimecanbea few milliseconds.

5. Conclusions

An adaptive control scheme is developed using a general discrete-time model of robot mani-

pulators. The control scheme utilizes only joint position-velocity measurements and the reference

position, and does not require knowledge of the payload or the robot characteristics. The adapta-

tion laws are derived using hyperstability theory which guarantees asymptotic trajectory tracking

despite gross robot parameter variations. The controller gains are independent of the robot param-
eters provided that the gain adaptation is sufficiently fast.

The method offers considerable flexibility in design by providing many free design parame-

ters. These parameters can be adjusted by the designer to improve the response and to increase

the speed of adaptation. The discrete-time adaptive control algorithm is extremely simple and

computationally fast, and is therefore suitable for real time digital control of robot manipulators.

Extensive computer simulation studies using a model of a direct drive manipulator have shown

that the discrete-time adaptive scheme performs satisfactorily despite gross payload variations
and unknown robot parameters.
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Appendix

In this appendix, we derive the gain adaptation algorithm (18). Consider Condition 1 and

write H (z) as

H(z)=z D (zl2. -C)-IB =DB +DC (zI2.-C)-lB (21)

Now, H(z) is SPR if the exists 2nx2n symmetric positive definite (SPD) matrices R and M, nxn

matrix K and 2n xn matrix L such that [ 15, Lemma B.4-2]

CrRC - R = - LL r - M (22)

BTRC + KTL r = DC (23)

Kr K = (DB ) + (DB )r _ B r RB (24)

The problem is to choose the matrices R, M, K, L and D to satisfy (22)-(24). Let

R = R2 R ; Rl=diag{rli} ' R2=diag{r2i} ' R3=diag{r3i}

where R 1, R2 and R 3 are diagonal nxn matrices whose diagonal elements are rli > 0, rz/> 0 and

rBi > 0; i=1,2 ..... n. This particular structure ensures that R is SPD and simplifies the derivations,

as will be seen. Substituting R and B in (24), we have

KTK = R T =R 3

or K = diag {'_-_3i} and thus the matrix K is found to satisfy (24). Next we choose D = ( R 2 R 3 )

and substitute for D, B, R, C and K in (23) to obtain L = 0. Thus L is also found and (23) is

satisfied. Now we consider (22), and in order to obtain explicit relationship between the elements

of R and the given matrices C and M, we select the following structures

1M ; Ml=diag{mli} ' M2=diag{m2i}

C= -C2 -C! ; C2 =diag{c2i} , Cl =diag{cli}

Substituting for R ,C and M in (22) and solving, we obtain

mi . mi
rli =mli + --c_i(l+c2i) , r2i = __ C2a'Cli

Ci q

where

; m li, m2i >0

mi
, r3i=--(l+c2i) (25a)

ci

m i =(mli+m2i)>O ; c i =(1--C2_)[(1+C2i)2--C2i] (25b)
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The characteristic polynomial of the reference model (10) is

I nA(z ) = I z21" + C: + C2 = HSi(z)
i=1

(26a)

where

8i(Z) ----Z 2 + C IiZ + C2i = (Z+_,ii)(Z +_k,2i)

Since the reference model is stable, i.e. I Z.li 1 < 1, I L2i I < 1, we must have

18i (0) I<1 8i (1)>0 8i (-1)>0

(26b)

or

Icoi I<1, (1+Cli+C2/)>0, (1-c l i -c 2i )>0 (27)

m li-l-m2i
,i=1,2 ..... n where a,. are

ci
Inequalities (27) imply that c_ in (25b) is positive. Let eq-

positive numbers, then using (25) and (26b) we have

r li = mli "l'_i (_,1i _2i )2(1+_,11 _2i ) (28a)

r 2i = Oti _.li _v2i (_,1i +_k_2/) (28b)

r 3i = 0_i (1+_'1 i _2i ) (28c)

Note that the acquired rli ,r2i and r3i are positive, and thus R 1, R2, R3 and consequently R are all

SPD. We conclude that Condition 1 is satisfied by choosing D in the adaptation algorithm (16)

as D = ( R 2 R 3 ) where the elements of R 2 and R 3 are given by (28b) and (28c), respectively.

In order to satisfy Condition 2, we select the matrices _l(v ,0, ) ..... _Ps(v ,0r) in (17 accord-

ing to the following proportional plus integral (summation) adaptation law

k-1

=Gv(k)OT(k-1)Elp +G_.,v(l)OT(l-1)Elt (29a)
I=O

k-1

= Gv (k)0T(k--2)E 2e + G Y] v (1)0T(I-2)E 2t (29b)
1=o

_III(V ,Oe) = C I - A_I(A I(k )-FP I(k )1

W2(v ,0, ) = C 2 - A _'11A 2(k )+P 2(k )]

I )1 k-IW3(v ,Or) = A ffl A 0(k)-Q 0(k = Gv (k )OT(k )Foe + G _., v (1)0f(/)Fot
I=0

(29c)

k-1

= Gv (k)0f(k -1)F lp + G ]_ v (1)Of(/-1 )F u (29d)
l=0

k-1

= Gv (k)Of(k-2)F2p + G E v (I)0f(/-2)F 2/ (29e)
1=o

tt14(v ,Or ) = A ff l I A l (k )-a l(k )1

_stJ5(v ,Or ) = A ffl I A 2(k )-a 2(k )]

where G, E1p , Elt ..... F2p , F21 are SPD matrices, and the subscripts P and I denote propor-

tional and integral terms, respectively.

Consider the first term in the expression for w(k), i.e. wl(k) given in (14b). Using (29a), we

have

" " >]y_vT(k)wl(k)= vT(k)Gv(k)OT(k-1)ElpOe(k-1)+vT(k)G]_v(1)OT(l-1)EuO,(k-1 (30)

k=o J,---ok t=o

It is seen that the proportional term produces two quadratic forms vT(k)Gv(k) and
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0e(k-1)TEip 0e(k-1) whicharebothpositivefor all k_>0. Similarly, it can be shown [15, Appen-
kl

dix D] that the integral term produces quadratic forms and thus _,vr(k)wl(k)>O. Since
kffi0

w2(k) ..... w_(k) in (14b) and (17) have structures similar to wl(k), we have
kl

_vr(k)wj(k) >0,j=l,2 ..... 5. We conclude that Condition 2 is satisfied due to the particular
k=0

choices in (29).

Let us chose G--A ffl, define the change in the gain matrices due to adaptation at time k as

AP l(k )=e l(k)-P 1(k-l) ..... AQ 2(k )=Q 2(k)--Q 2(k-l), and denote the corresponding changes in the

robot matrices by AA 0(k), AA l(k) and AA 2(k). Then after simplifications, we obtain from (29)

AP I(k )+AA l(k )-AAo(k )C ! = "v(k-1) OT(k-2)-v(k ) 0T(k-1)] E1p - v (k-l) OT(k-2)Ell (31a)

AP2(k)+AA2(k)-AAo(k)C2 = 'v(k-1) OT(k-3)-v(k) 0T(k-2) 3 E2p - v(k-1) OT(k-3)Ell (31b)

•AQo(k)--AAo(k ) = v(k-1) OT(k-1)-v(k) OT(k Fop - v(k-1) 0T(k-1)F0t (31c)

AQ I(k)-AA _(k) = v(k-1) eT(k-2)-v(k) er(k-1 F_p - v(k-1) er(k-2)F_ (31d)

AQ2(k)-AA2(k ) = "v(k-1) 07(k-3)-v(k) 0T(k-2)] F2p - v(k-1) 0T(k-3)F2/ (31e)

In order to make the controller gain matrices independent of the robot matrices, we assume that

the changes in the robot matrices is much smaller than the corresponding changes in the gain

matrices due to adaptation, i.e.

AP l(k ) >> AA l(k)-AA 0(k)C 1..... AQ 2(k ) >> AA 2(k ) (32)

This assumption is valid if the adaptation rate is sufficiently fast or equivalently, if the robot

matrices are slowly time-varying. The vector v (k) in (31) is obtained from (16) as

v (k) = R 2 e(k-1) + R 3 e(k) (33)

which in view of (13) with 0era (k)-=0, is

v (k) = - (R 20e (k-l) + R30 e (k)) _ - I_, (k) (34)

Finally, using (31), (32) and (34), we obtain the gain adaptation laws given by (18).
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